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Let C be the field of complex numbers. It is well known that there are many automorphisms
of the said field. Very few of them are completely characterized, while the rest show a very
”wild” behaviour. We shall see in this paper an existence proof and illustrate the wildness of
such mathematical objects. We will see that the construction of such automorphisms requires the
use of the axiom of choice, or some equivalent assumption. Here we will be using an application
of Zorn’s Lemma.

Any field considered in this paper will be a subfield of C. Any isomorphism between fields
is seen as an injective ring homomorphism. Finally, let F ′ be a subfield of F , ϕ and φ be two
isomorphisms, with domain respectively F and F ′. We say that ϕ extend φ (to F ) if ϕ/F ′ = φ
( i.e. ϕ(x) = φ(x) ∀x ∈ F ′).

1 Describing automorphisms of C
Theorem 1.1. 1. Any isomorphism between subfields of C extends IQ.

2. The only automorphisms of C which are continuous are IC and complex conjugacy.

Proof. 1. Let F and F ′ two subfields of C, φ an isomorphism from F to F ′.

• ∀n ∈ N :
φ/Q(n) = φ/Q(1 + ...+ 1) = φ/Q(1) + ...+ φ/Q(1) = n

• φ/Q preserves the order : ∀x ∈ R

x > 0 ⇒ ∃y ∈ R / x = y2 ⇒ φ(x) = φ(y2) = φ(y)2 > 0

Hence, φ is increasing on R. Let a,b in Q such that a < b

a < b⇒ b− a > 0⇒ φ(b− a) > 0⇒ φ(b) < φ(a)

• Now for all q ∈ Q

∃a, b, p ∈ N, p 6= 0 q =
b− a
p
⇒ φ(q) = φ(

b− a
p

) =
φ(b)− φ(a)

φ(p)
=
b− a
p

= q

Hence φ/Q = IQ



2. Let φ ∈ Aut(C), φ continuous. Since Q is dense in R

∀x ∈ R ∃(xn)n∈N ⊂ Q xn −→ x ⇒ φ(xn) = xn −→ φ(x)

and hence, φ(x) = x for all x in R. We have

φ(i)2 = φ(i2) = φ(−1) = −1 ⇒ φ(i) = ±i

Finally, for z = x+ iy in C

φ(z) = φ(x+ iy) = φ(x) + φ(i)φ(y)

• If φ(i) = i : φ(z) = z and φ = IC
• If φ(i) = −i : φ(z) = z and φ is complex conjugacy.

We shall see now that any automorphism besides those two, have a very ”wild” behavior. In
fact, consider φ such an automorphism, and choose r ∈ R such that φ(r) ∈ C \R. Since φ is the
identity on Q, φ fix all the rationals. Every neighbourhood of r contains rationals, hence will be
left fixed by φ while r will be moved, thus φ is clearly discontinuous.
Now consider a, b in Q, ar + b ∈ R and φ({(ar + b) / a, b ∈ Q}) = {a+ φ(r)b / a, b ∈ Q}.
Let φ(r) = x+ iy with x, y ∈ R, y 6= 0

φ({(ar + b) / a, b ∈ Q}) = {(a+ yb) + i(xb) / a, b ∈ Q} ⊂ φ(R)

With {(a+yb) + i(xb) / a, b ∈ Q} clearly a dense subset of C, contained in φ(R). Hence φ(R)
is a dense subset of C.

We just saw that such automorphisms are discontinuous, fix a dense subset of R while map-
ping the whole reals to a dense subset of C, moreover they are not even measurable.

2 Isomorphism extension

We discuss in this section, how to extend an automorphism of a subfield of C to one of its finitely
generated extensions.

Theorem 2.1. Let F, F ′ be subfields of C, φ an isomorphism from F to F ′, α transcendental
over F . Then the two assertions are equivalent :

(a) ∃β transcendental over F ′

(b) ∃φ extending φ to F (α) such that φ(α) = β

Proof. • (a)⇒ (b)

Consider φ′ : F [X] −→ F ′[X] defined as

φ′(P (X) =

n∑
i=0

aiX
i) =

n∑
i=0

φ(ai)X
i



φ′ is well defined, and clearly a ring homomorphism, from the the properties of φ and
operations on polynomials; with φ′(X) = φ(1)X = X and φ′(λ) = φ(λ) ∀λ ∈ F .
φ′ is injective, in fact for

φ′(

n∑
i=0

aiX
i) = 0⇒

n∑
i=0

φ(ai)X
i = 0⇒ φ(ai) = 0⇒ ai = 0 ∀i ∈ {1, ..., n}

Hence, φ′ extend φ to F [X].

Same way, we can define φ̃ : F (X) −→ F ′(X) such that φ̃(X) = X and φ̃(λ) = φ′(λ) =
φ(λ) ∀λ ∈ F .
Finally, consider the (unique) isomorphisms{

u : F (α) −→ F (X)
u(α) = X

and

{
v : F ′(β) −→ F ′(X)

v(β) = X

We get the following diagram

F (X) F ′(X)

F [X] F ′[X]

F F ′

F ′(β)F (α)

φ̃

φ′

φ

u v−1

Pose φ = v−1 ◦ φ̃ ◦ u. φ is well defined, and clearly an isomorphism, as product of isomor-
phisms, with

φ(α) = v−1 ◦ φ̃(u(α)) = v−1(φ̃(X)) = v−1(X) = β

And
φ(λ) = v−1 ◦ φ̃(u(λ)) = v−1(φ̃(λ)) = v−1(φ(λ)) = φ(λ)

• (b)⇒ (a)

Now consider an isomorphism φ̃ as stated. If β is not transcendental then thre exist a
polynomial P ′ such that P ′(β) =

∑n
i=0 a

′
iβ
i = 0 and P ′ 6= 0

But, we have

φ(

n∑
i=0

aiα
i) =

n∑
i=0

φ(ai)β
i =

n∑
i=0

a′iβ
i = 0⇒

n∑
i=0

aiα
i = 0⇒ α is algebraic over F

which contradict the fact that α is transcendental.

Theorem 2.2. Let F, F ′ be subfields of C, φ an isomorphism from F to F ′, α algebraic over F .
Then the two assertions are equivalent :



(a) ∃β such that P ′α(β) =
∑n
i=0 φ(ai)β

i = 0, (ai)0≤i≤n coefficient of the minimal polynomial of
α in F .

(b) ∃φ extending φ to F (α) such that φ(α) = β

Proof. The proof of this version is almost similar to the previous one as we will see

• (a)⇒ (b)

Consider again φ′ : F [X] −→ F ′[X] defined as precedant, we shall extend φ to φ′ the
same way we did.
Here, since < Pα > is an ideal of F[X], and since P ′α is irreducible in F [X], < P ′α > is as
well an ideal of F ′[X]. We have φ′(< Pα >) ⊆< P ′α >.

We shall define φ̃ : F [X]
/
< Pα > −→ F ′[X]

/
< P ′α > such that φ̃(X) = X and φ̃(λ) =

φ′(λ) = φ(λ) ∀λ ∈ F .
Finally, consider (again) the (unique) isomorphisms{

u : F (α) −→ F [X]
/
< Pα >

u(α) = X
and

{
v : F ′(β) −→ F ′[X]

/
< P ′α >

v(β) = X

We get the following diagram

F [X]
/
< Pα >

F ′[X]
/
< P ′α >

F [X] F ′[X]

F F ′

F ′(β)F (α)

φ̃

φ′

φ

u
v−1

Pose φ = v−1 ◦ φ̃ ◦ u. φ is well defined, and clearly an isomorphism, as product of isomor-
phisms, with

φ(α) = v−1 ◦ φ̃(u(α)) = v−1(φ̃(X)) = v−1(X) = β

And
φ(λ) = v−1 ◦ φ̃(u(λ)) = v−1(φ̃(λ)) = v−1(φ(λ)) = φ(λ)

• (b)⇒ (a)

The same way, consider an isomorphism φ as stated. Let Pα be the minimal polynomilal
of α in F . we have

Pα(α) =

n∑
i=0

aiα
i = 0⇒ φ(

n∑
i=0

aiα
i) =

n∑
i=0

φ(ai)β
i = 0

Hence P ′α(β) = 0



We will propose an example of extending isomorphisms over extensions of the field Q, using
this two theorems. Consider

ψ : Q(
√

5) −→ Q(
√

5)
√

5 is algebraic over Q with minimal polynomial

P ′√
5
(X) = X2 − IQ(5) = X2 − 5.

P ′√
5

has only two roots in C, which are ±
√

5. For β = −
√

5, applying Theorem 2.2 we get that

ψ is an (non trivial) automorphism that fix the rationals and send
√

5 to −
√

5.

Consider now a slightly bigger extension of Q(
√

5), let’s say Q( 4
√

5). Here again, 4
√

5 is alge-
braic over Q(

√
5) with minimal polynomial P 4√5(X) = X2 −

√
5. Considering

P ′4√5
(X) = X2 − ψ(

√
5) = X2 +

√
5

P ′4√5
has the only two following roots ±i 4

√
5 in C. Applying Theorem 2.2 again, we extend ψ to

a new isomorphism

ψ̃ : Q(
4
√

5) −→ Q(i
4
√

5)

that fix the rationals, send
√

5 to −
√

5 and 4
√

5 to i 4
√

5.

Now let’s get a transcendental element over Q( 4
√

5), let’s say e. From Theorem 2.1, we can

construct a new isomorphism ψ extending ψ̃ to Q( 4
√

5, e) sending simply e to another transcen-
dental element over Q(i 4

√
5), say 1

1+π .

3 Zorn’s Lemma and C-Automorphism extension

We can clearly see that, by using ordinary induction and Theorem 2.1 and 2.2, we can extend
any isomorphism of a subfield of C into an isomorphism of a finitely generated extension of that
same field. Since C is not even a countably generated extension of Q, we will be using Zorn’s
lemma to deal with the transfinite aspect of our induction.

We see in the example above, that sometimes, the only possible way to extend an automor-
phism to a finite extension of its domain may change its range, which does not make it an
automorphism anymore. To avoid this difficulty, we will first prove the following result :

Lemma 3.1. Let E,F be two fields, φ an isomorphism from E to F , then φ can be extended to
an isomorphism from E to F , the algebraic closures , respectively, of E and F .

Proof. Let L be an intermediate field of E and E, and ϕ an isomorphism from L to a subfield
of F , extending φ.
We consider the set S of all pairs (L,ϕ). It is non-empty since it contains (E, φ).
We define a partial ordering ”≤” on S such that

(L1, ϕ1) ≤ (L2, ϕ2) ⇒ L1 ≤ L2 and ϕ1(x) = ϕ2(x) ∀x ∈ L1

It is immediate to check that this relation does give a partial ordering of S.
Let I be an index set, C = {(Hi, ϕi), i ∈ I} be a chain of S we will show that C has an upper



bound (H,ϕ) in S.

Consider H =
⋃
i∈I Hi. Since Hi ⊆ E ∀i ∈ I, H ⊆ E. Let a, b ∈ H, there exist i, i′ ∈ I

such that a ∈ Hi and b ∈ Hi′ . Since C is a chain, Hi ≤ Hi′ or Hi′ ≤ Hi.

If, say, Hi ≤ Hi′ ⇒ a, b ∈ Hi ⇒ a± b, ab, a
b
∈ Hi ⊂ H (for b 6= 0)

Hence, E ≤ H ≤ E.

Define ϕ : H −→ ϕ(H) ≤ F such that for a ∈ H, ϕ(a) = ϕi(a), (a ∈ Hi).
ϕ is well defined since if a ∈ Hi ∩ Hi′ , since C is a chain, (Hi, ϕi) ≤ (Hi′ , ϕi′) or (Hi′ , ϕi′) ≤
(Hi, ϕi). Either way, ϕi(a) = ϕi′(a).

We show that ϕ as defined above, is an isomorphism. Let a, b ∈ H, ∃i ∈ I / a, b ∈ Hi and
hence a+ b, ab ∈ Hi.{

ϕ(a+ b) = ϕi(a+ b) = ϕi(a) + ϕi(b) = ϕ(a) + ϕ(b)
ϕ(ab) = ϕi(ab) = ϕi(a)ϕi(b) = ϕ(a)ϕ(b)

and ϕ is injective, since for a ∈ H such that ϕ(a) = 0; ϕi(a) = 0 and from the injectivity of the
φi, a = 0. Therefore, ϕ is an isomorphism.

Thus, we can see that for every chain C = {(Hi, ϕi), i ∈ I} of S,

(Hi, ϕi) ≤ (H,ϕ) ∀i ∈ I

Every chain has an upper bound, applying Zorn’s Lemma, there exists a maximal element
(LM , ϕM ) of S, which means a maximal isomorphism ϕM extending φ to LM , a maximal subfield
of F .

Now, suppose that LM ⊂ E, there exists then a non zero element α ∈ E \ LM . in particu-
lar, α is algebraic over E.
F is algebraically closed, every polynomial in F [X] has a root in F , in particular

P ′α(X) =

n∑
i=0

ϕ(ai)X
i

call such a root β, from Theorem 2.2 there is an isomorphism ϕ extending ϕM to LM (α) which
contradicts the maximality of ϕM . Thus, LM = E.

Since ϕM is an isomorphism, ϕ(E) is an algebraically closed subset of F containing F , which
happens to be F .

Now we can announce our main result :

Theorem 3.2. Any automorphism of a subfield of C can be extended to an automorphism of C.

Proof. Let E be a subfield of C and φ an automorphism of E. We consider the same way an
intermediate field L, an automorphism ϕ extending φ to L and define S = {(L,ϕ)}.
Leading the same construction as in Lemma 1., it is easy to see that S satisfies the hypothesis
of Zorn’s Lemma, we just have to verify that ϕ(H) = H

b ∈ ϕ(H)⇒ ∃i ∈ I, a ∈ Hi and b = ϕ(a) = ϕi(a) ∈ Hi ⊆ H ⇒ ϕ(H) = H



Applying Zorn’s lemma, we get ϕM the maximal automorphism extending φ to LM .

Now again, suppose that LM ⊂ C, there exists a non zero complex number z ∈ C \ LM .
If z is algebraic over LM , then from Lemma 3.1, we can extend ϕM into an automorphism of
LM which contradicts the maximality of ϕM . If not, then z is transcendental over LM and The-
orem 2.2 gives an extending automorphism of ϕM to LM (z) (sending z to z for example) which
contradicts again the maximality of ϕM . Therefore, LM = C which completes the proof.

Since there’s uncountably many complex numbers which are transcendental over subfields
of C, there is uncountably many way to extend an automorphism of a subfield into one of its
finitely generated extension, using Theorem 2.2; thus to automorphisms of C according to our
last result. Back to our previous example

Q ψ−→ Q(
√

5)
ψ̃−→ Q(

4
√

5)
ψ−→ Q(

4
√

5, e)

If, instead of this construction, we extended IQ as follow

Q
IQ(

√
5)−−−−→ Q(

√
5)

ψ̃′
−→ Q(

4
√

5)
ψ′
−→ Q(

4
√

5, e)

with {
ψ̃′ : Q( 4

√
5) −→ Q( 4

√
5)

ψ̃′( 4
√

5) = i 4
√

5
and

{
ψ′ : Q( 4

√
5, e) −→ Q( 4

√
5, e)

ψ′(e) = 1
1+e

Applying Theorem 3.2 on ψ′ we get a C-automorphism, sending e to 1
1+e , 4

√
5 to i 4

√
5 and fixing√

5, which clearly differs from IC or complex conjugacy.
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